Sunday, November 2, 2008

Dark Fluid: Dark Matter And Dark Energy May Be Two Faces Of Same Coin

Astronomers at the University of St Andrews believe they can "simplify the dark side of the universe" by shedding new light on two of its mysterious constituents.

Dr HongSheng Zhao, of the University's School of Physics and Astronomy, has shown that the puzzling dark matter and its counterpart dark energy may be more closely linked than was previously thought.

Only 4% of the universe is made of known material - the other 96% is traditionally labelled into two sectors, dark matter and dark energy.

A British astrophysicist and Advanced Fellow of the UK's Science and Technology Facilities Council, Dr Zhao points out, "Both dark matter and dark energy could be two faces of the same coin.

"As astronomers gain understanding of the subtle effects of dark energy in galaxies in the future, we will solve the mystery of astronomical dark matter at the same time. "

Astronomers believe that both the universe and galaxies are held together by the gravitational attraction of a huge amount of unseen material, first noted by the Swiss astronomer Fritz Zwicky in 1933, and now commonly referred to as dark matter.

Dr Zhao reports that, "Dark energy has already revealed its presence by masking as dark matter 60 years ago if we accept that dark matter and dark energy are linked phenomena that share a common origin."

In Dr Zhao's model, dark energy and dark matter are simply different manifestations of the same thing, which he has considered as a 'dark fluid'. On the scale of galaxies, this dark fluid behaves like matter and on the scale of the Universe overall as dark energy, driving the expansion of the Universe. Importantly, his model, unlike some similar work, is detailed enough to produce the same 3:1 ratio of dark energy to dark matter as is predicted by cosmologists.

Efforts are currently underway to hunt for very massive dark-matter particles with a variety of experiments. The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva is a particle accelerator that amongst other objectives, could potentially detect dark matter particles.

According to Dr Zhao, these efforts could turn out to be fruitless. He said, "In this simpler picture of universe, the dark matter would be at a surprisingly low energy scale, too low to be probed by upcoming Large Hadron Collider.

"The search for dark-matter particles so far has concentrated on highly-energetic particles. If dark matter however is a twin phenomenon of dark energy, it will not show up at instruments like the LHC, but has been seen over and over again in galaxies by astronomers."

However, the Universe might be absent of dark-matter particles at all. The findings of Dr Zhao are also compatible with an interpretation of the dark component as a modification of the law of gravity rather than particles or energy.

Dr Zhao concluded. "No matter what dark matter and dark energy are, these two phenomena are likely not independent of each other."

Background

Theories of the physics of gravity were first developed by Isaac Newton in 1687 and refined by Albert Einstein’s theory of General Relativity in 1905 which stated that the speed of gravity is equal to the speed of light. However, Einstein was never fully decided on whether his equation should add an omnipresent constant source, now called dark energy in general.

Astronomers following Fred Zwicky have also speculated additional sources to Einstein's equation in the form of non-light emitting material, called dark matter in general. Apart from very light neutrinos neither dark sources have been confirmed experimentally.

Dr Zhao and his collaborators' findings have recently been published by Astrophysical Journal Letters in December 2007, and Physics Review D. 2007.

Magnetic Portals Connect Sun And Earth

From here.

During the time it takes you to read this article, something will happen high overhead that until recently many scientists didn't believe in. A magnetic portal will open, linking Earth to the sun 93 million miles away. Tons of high-energy particles may flow through the opening before it closes again, around the time you reach the end of the page.

"It's called a flux transfer event or 'FTE,'" says space physicist David Sibeck of the Goddard Space Flight Center. "Ten years ago I was pretty sure they didn't exist, but now the evidence is incontrovertible."

Indeed, today Sibeck is telling an international assembly of space physicists at the 2008 Plasma Workshop in Huntsville, Alabama, that FTEs are not just common, but possibly twice as common as anyone had ever imagined.

Researchers have long known that the Earth and sun must be connected. Earth's magnetosphere (the magnetic bubble that surrounds our planet) is filled with particles from the sun that arrive via the solar wind and penetrate the planet's magnetic defenses. They enter by following magnetic field lines that can be traced from terra firma all the way back to the sun's atmosphere.

"We used to think the connection was permanent and that solar wind could trickle into the near-Earth environment anytime the wind was active," says Sibeck. "We were wrong. The connections are not steady at all. They are often brief, bursty and very dynamic."

Several speakers at the Workshop have outlined how FTEs form: On the dayside of Earth (the side closest to the sun), Earth's magnetic field presses against the sun's magnetic field. Approximately every eight minutes, the two fields briefly merge or "reconnect," forming a portal through which particles can flow. The portal takes the form of a magnetic cylinder about as wide as Earth. The European Space Agency's fleet of four Cluster spacecraft and NASA's five THEMIS probes have flown through and surrounded these cylinders, measuring their dimensions and sensing the particles that shoot through. "They're real," says Sibeck.

Now that Cluster and THEMIS have directly sampled FTEs, theorists can use those measurements to simulate FTEs in their computers and predict how they might behave. Space physicist Jimmy Raeder of the University of New Hampshire presented one such simulation at the Workshop. He told his colleagues that the cylindrical portals tend to form above Earth's equator and then roll over Earth's winter pole. In December, FTEs roll over the north pole; in July they roll over the south pole.

Sibeck believes this is happening twice as often as previously thought. "I think there are two varieties of FTEs: active and passive." Active FTEs are magnetic cylinders that allow particles to flow through rather easily; they are important conduits of energy for Earth's magnetosphere. Passive FTEs are magnetic cylinders that offer more resistance; their internal structure does not admit such an easy flow of particles and fields. (For experts: Active FTEs form at equatorial latitudes when the IMF tips south; passive FTEs form at higher latitudes when the IMF tips north.) Sibeck has calculated the properties of passive FTEs and he is encouraging his colleagues to hunt for signs of them in data from THEMIS and Cluster. "Passive FTEs may not be very important, but until we know more about them we can't be sure."

There are many unanswered questions: Why do the portals form every 8 minutes? How do magnetic fields inside the cylinder twist and coil? "We're doing some heavy thinking about this at the Workshop," says Sibeck.

Meanwhile, high above your head, a new portal is opening, connecting your planet to the sun.